

Reduced size, ultra-stable, high precision (ppm class) fluxgate technology DT Series current transducer for isolated DC and AC current measurement up to 50Arms

Features

Fluxgate, closed loop compensated technology with fixed excitation frequency and second harmonic zero flux detection for best in class accuracy and stability

2 MHz high frequency bandwidth

Excellent linearity, better than 1.5 ppm

Industry standard DSUB 9 pin connection

Green diode for normal operation indication

Large aperture Ø20.7mm for cables and bus bars

Weighs only 0.15 kg

Applications

Optimized for space constraint applications

MPS for particles accelerators

Gradient amplifiers for MRI devices

Stable power supplies

Precision drives

Batteries testing and evaluation systems

Power measurement and power analysis

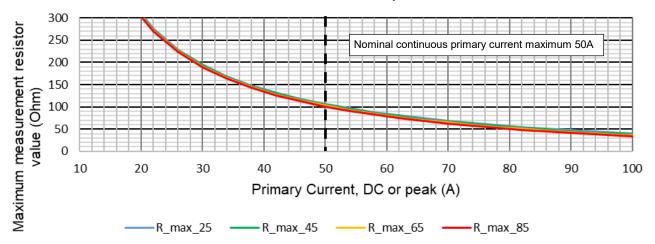
Variable speed drives

Calibration unit

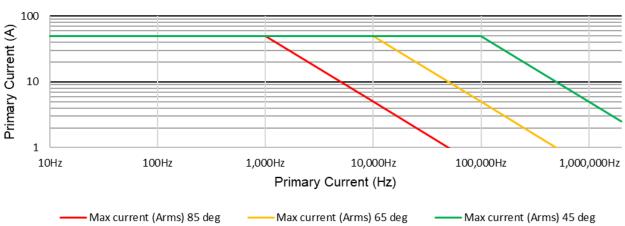
Specification highlights	Symbol	Unit	Min	Тур	Max
Nominal continuous primary AC current	I _{PN} AC	Arms			50
Nominal continuous primary DC current	I _{PN} DC	А	-50		50
Measuring range	Î _{PM}	А	-75		75
Primary / secondary ratio	n1 : n2		1:500		1:500
Linearity error	$\epsilon_{\scriptscriptstyle L}$	ppm	-1.5	0.7	1.5
Offset current (including earth field)	I _{OE}	ppm	-100		100
DC-10Hz Overall accuracy @25°C (= E _L + I _{OE})	acc8	ppm	-101.5		101.5
Bandwidth	f(±3dB)	kHz		2000	
AC typical gain error 10Hz to 5kHz	£G	%		±0.01	
Operating temperature range	Та	°C	-40		85
Power supply voltages	Uc	V	±14.25		±15.75

All ppm (or %) values refer to nominal current

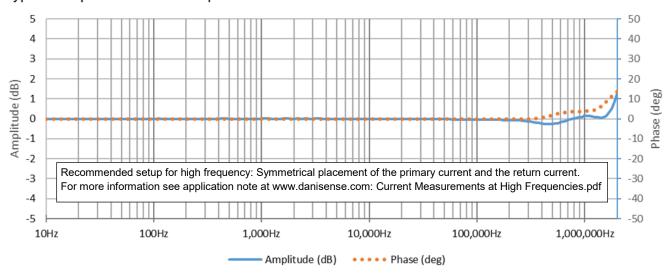
DT50ID


Electrical specifications at Ta=23°C, supply voltage = ± 15V unless otherwise stated

Cumbal	l lmi4	Min	T	May	Comment
		IVIIII	ι yp.		
					Refer to fig. 1 & 2 for derating
_					Refer to fig. 1 for derating
					Refer to fig. 1 & 2 for derating
	А				Non-measured, 100ms
I _{SN}	mA				At nominal primary DC current
		1:500			
R_M	Ω	0	50		Refer to fig. 1 for details
$\epsilon_{\scriptscriptstyle L}$	ppm μA	-1.5 -0.15	0.7 0.07		ppm refers to nominal current μA refers to secondary current
I _{OE}	ppm μA	-100 -10			ppm refers to nominal current µA refers to secondary current
асс8	ppm	-101.5		101.5	ppm refers to nominal DC current
TC _{IOE}	ppm/K μΑ/K	-0.8 -0.08	0.4 0.04		ppm refers to nominal current μA refers to secondary current
f(±3dB)	kHz		2000		Small signal, graphs figure 3
			0.01%		
86	0/_		1%		See notes in fig. 3
cG	70		10%		% refers to nominal current
			30%		
θ	0				See notes in fig. 3
					Ţ.
tr @ 90%	He				
1 6 30 70	μο			0.07	
noise	ppm RMS		0.6	1.2	ppm RMS refers to nominal cur-
			1.1	3	rent
			9.3	27	
			0.4	0.7	
			1.6	4	ppm peak-to-peak refers to nomi-
noise	ppm p-p		3.1	,	nal current
			-		
				150	
† _{Exc}	kHz		31.25		
	μV rms			5	
Uc	V	±14.25		±15.75	
Ips	mA		40		Add Is (if Is is positive)
Ins	mA		35		Add Is (if Is is negative)
Та	°C	-40		85	
	ppm/month µA/month	-0.1 -0.01			ppm refers to nominal current μA refers to secondary current
	ppm/mT µA/mT	-16 -1.6	4 0.4	16	ppm refers to nominal current µA refers to secondary current
	ppm/mV		0.0052		ppm refers to nominal current
	EL IOE accE TCIOE f(±3dB) BG tr @ 90% noise f _{Exc} Uc Ips Ins	IPN AC Arms IPN DC A IPM A ÎOL A ISN mA RM Ω EL ppm μA ppm μA/K ppm/K f(±3dB) kHz tr @ 90% μs noise ppm RMS fex kHz μV rms μV rms Uc V lps mA Ins mA Ta °C ppm/month μA/month μA/mT ppm/month	I _{PN} AC Arms -50 I _{PN} DC A -50 I _{PM} A -250 I _{SN} mA -100 I _{SN} mA -100 R _M Ω 0 E _L ppm -1.5 µA -100 -10 acc£ ppm/K -0.8 µA/K -0.08 -0.08 f(±3dB) kHz -0.8 θ ° -0.8 r(±3dB) µA -0.9 tr@90% µs -0.9 tr@90% µs -0.9 noise ppm P-p -0.1 f _{Exc} kHz -0.1 Uc V ±14.25 Ips mA -0.01 Ins mA -0.01 ppm/month -0.01 -0.01 ppm/month -0.01 -0.01 ppm/month -0.6 -1.6 ma -1.6 -1.6	IPN AC	I _{PN} AC


Measurement resistor RM and ambient temperature derating (Fig. 1)

Maximum measurement resistor vs. ambient temperatures


Frequency and ambient temperature derating (Fig. 2)

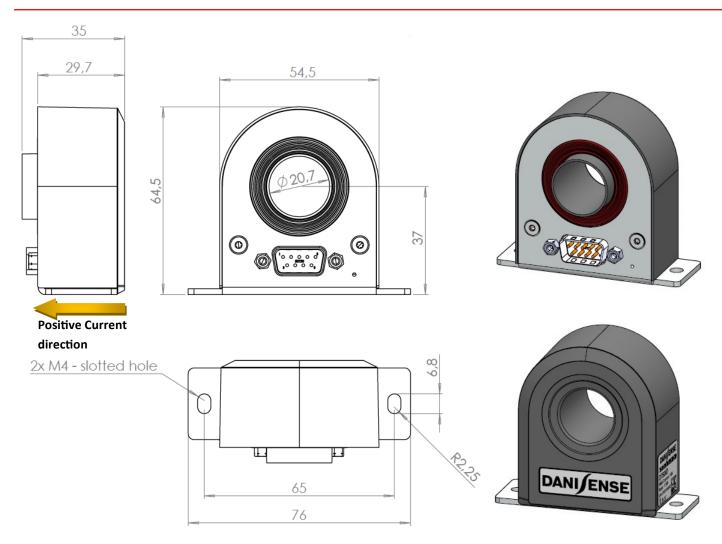
Maximum primary current A_{rms}

Frequency characteristics (Fig. 3)

Typical Amplitude / Phase response

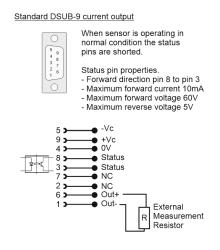
Isolation specifications

Parameter	Unit	Value	
Clearance	mm	11.5	
Creepage distance	mm 11.5		
Rms voltage for AC isolation test, 50/60 Hz, 1 min - Between primary and (secondary and shield)	kV	5.7	
Impulse withstand voltage (1.2/50µs)	kV	10.4	
Rated rms isolation voltage			
reinforced isolation, overvoltage category III, Pollution degree 2 according to	V		
- IEC 61010-1		300	
- EN50780		600	


Absolute maximum ratings

Parameter	Unit	Max	Comment
Primary	Α	250	Maximum 100ms
Power supply	V	±16.5	

Environmental and mechanical characteristics


Parameter	Unit	Min	Тур	Max	Comment	
Altitude	m			2000		
Usage					Designed for indoor use	
Transient voltages					Up to overvoltage category III	
Polution Degree				2		
Ambient operating temperature range	°C	-40		85		
Storage temperature range	°C	-40		85		
Relative humidity	%	20		80	Non-condensing	
Mass	kg		0.15			
Connections	Power supplies: D-SUB 9 pins male					
	EMC: IEC 61326-1:2013-2021					
	Safety: IEC 61010-2-30 and IEC 61010-1:2010 3rd Edition					
Standards	Random vibration test: IEC 60068-2-64:2008					
	Shock test: IEC 60068-2-27:2009					
	Transport test: IEC 60068-2-64:2008					

DT50ID

(general tolerance 0.3mm unless otherwise stated)

Positive current direction

Mounting instructions

Is identified by an arrow on the transducer body

Base plate mounting:

2 x M4 - slotted holes

Suggested fastening torque: 5.5 Nm

Declaration of Conformity

Danisense A/S

Malervej 10

DK-2630 Taastrup

Denmark

Declares that under our sole responsibility the products listed in Appendix A are in conformity with the provisions of the following EC Directives, including all amendments, and with national legislation implementing these

directives:

Directive 2014/30/EU

Directive 2014/35/EU

And that the following harmonized standards have been applied

EN 61010-1 (Third Edition):2010, EN 61010-1:2010

EN 61010-2-030:2010

EN 61326-1:2013

All DANISENSE products are manufactured in accordance with RoHS directive 2011/65/EU. Annex II of the RoHS directive was amended by directive 2015/863 in force since 2015, expanding the list of 6 restricted substances (Lead, Hexavalent Chromium, PBB, PBDE and Cadmium)

Danisense follows the provision in EN 63000:2018

Appendix A describes the products covered by this Declaration of Conformity.

Place

1400

Taastrup, Denmark

Henrik Elbæk

Date

2022-03-15