

OVERVIEW

sercalo's fiber optic $1 \times \mathrm{N}$ switches are bidirectional optomechanical switches based on a coaxial design where a single MEMS mirror redirects light from a common fiber to one of N ports. The MEMS technology results in low insertion loss and low crosstalk between channels while keeping a constant switching performance over life.
The switch is available in several different variants to simplify integration in existing systems and reduce development cost. The miniature packages withstands rugged environments and is well suited for direct mounting on printed circuit boards.
The hermetically sealed MEMS and the laser welded fiber collimator guarantee broad temperature range and superior long-term stability. No epoxy is present in the optical path.
The component is compliant to Telcordia 1221 reliability standards and RoHS requirements 2015/863/EU.

FIBER OPTIC 1xN SWITCH coaxial design

FEATURES

- Low insertion loss
- Reliable
- Up to 1×36 optical ports
- UART, $I^{2} \mathrm{C} /$ SMBus and parallel interface
- Ethernet interface available on request
- RoHS compliant

APPLICATIONS

- Optical network switching
- Instrumentation
- Test and measurement

Contact:

Sercalo Microtechnology Ltd.
Landstrasse 151
9494 Schaan - Principality of Liechtenstein
Tel. +423 $2375797 \quad$ Fax. +4232375748
www.sercalo.com e-mail: info@sercalo.com

ORDERING INFORMATION

sercalo's COAXIAL TYPE 1xN switch is non-latching: at power-off it breaks the optical connection and routing of the common port is not defined. The component is bidirectional, the common port can be used as input or output. The PM Panda version is offered up to 1×4 ports.
The switch is available in four different variants:
SC: standard size - ribbon fibers
mSC : miniature size - small driver board: $7 \times 40 \mathrm{~mm}$
rSC: compatible with industry pinout
bcSC: bare optical component
TECHNICAL SPECIFICATIONS

Optical Specifications		Unit	Min	Typ	Max
Wavelength range		nm	1250		1670
Insertion loss up to 1×4 ${ }^{1}$		dB		0.4	1.0
Insertion loss up to 1×16^{1}		dB		0.8	1.2
Insertion loss up to 1×24^{1}		dB		1.0	1.5
Insertion loss up to $1 \times 36{ }^{1}$		dB		1.2	2.0
Crosstalk		dB	50	60	
Polarization dependent loss		dB			0.1
Return loss		dB	50	55	
Wavelength dependent loss (one band)		dB			0.2
Wavelength dependent loss (1250-1670 nm)		dB		0.5	1.0
Temperature dependent loss		dB			0.2
Maximum optical power level ${ }^{2}$		mW			500
Switching time		ms		5	10
Cycle rate		Hz		10	50
Repeatability ${ }^{3}$		dB			0.01
Durability		cycles	No wear out		
Optical Specifications (PM fiber -up to 1x4)Polarization extinction ratio					
		dB	20		
Electrical Specifications (SC, mSC, rSC)					
Supply voltage		V	4.75	5	5.25
Power consumption, normal mode		mW			150
Power consumption, standby		mW		40	
UART speed		baud	9600		115200
SMBus/ $/{ }^{2} \mathrm{C}$ bus speed		kbps			400
Input logic level low		V		0	0.6
Input logic level high		V	2.4	5	
Output logic level low		V		0	0.6
Output logic level high		V	2.6	3.3	
Reset inactive voltage ${ }^{4}$		V	2.4	5	
Reset active voltage		V		0	0.9
Electrical Specifications (bcSC)		us	15		
Driving voltage		V	0		
Driving voltage damage threshold		V			45
Electrostatic discharge tolerance ${ }^{5}$Package		V			50
Operating temperature		${ }^{\circ} \mathrm{C}$	-10		70
Storage temperature		${ }^{\circ} \mathrm{C}$	-40		85
Operation humidity (non condensing)		\% r.h.	0		95
Pigtail length		cm	50		100
Dimensions	SC	mm	$40 \times 21 \times 7$		
	mSC	mm	$40 \times 7 \times 7.5$		
	rSC	mm	$68 \times 30 \times 9$		
	bcSC	mm		¢6	
ROHS Compliance			2015/863/EU (no exceptions)		
Values at $25^{\circ} \mathrm{C}$ at 1550 nm , without connectors. For operation over several bands 1250 to 1670 add 0.5 dB . ${ }^{2}$ It is recommended to turn off the laser during switch transients when switching optical power above 100 mW . ${ }^{3}$ For constant temperature and polarization. ${ }^{4}$ Through onboard pull-up resistor. ${ }^{5}$ The bare optical component is not protected against ESD.					

FUNCTIONAL BLOC DIAGRAM

SC STANDARD SIZE - DIMENSIONS AND PINOUT

Pin number	Description
1	Parallel PD3
2	Parallel PD4
3	Parallel PD1
4	Parallel PD2
5	Parallel STROBE/ENABLE
6	Parallel PD0
7	Ground (GND)
8	Supply voltage (VD)
9	Reserved
10	UART TX
11	Reserved
12	UART RX
13	System reset (RST)
14	SMBus/I2C SDA
15	SMBus/I2C SCL
16	Ground (GND)

mSC MINIATURE - DIMENSIONS AND PINOUT

$\begin{gathered} \text { Pin } \\ \text { number } \end{gathered}$	Description
1	I/F mode
2	Supply voltage (VD)
3	System reset (RST)
4	Ground (GND)
5	SMBus/l${ }^{2} \mathrm{C}$ A0
6	SMBus/I²C A2 / UART RX
7	SMBus/I²C A1 / UART TX
8	SMBus/12C SCL
9	SMBus/1²C A3
10	SMBus/ ${ }^{1} \mathrm{C}$ S SA

rSC INDUSTRY COMPATIBLE - DIMENSIONS AND PINOUT

bcSC BARE OPTICAL COMPONENT - DIMENSIONS AND PINOUT

Pin number	Description
1	Axis X-
2	Axis Y-
3	Axis X_{+}
4	Axis Y_{+}
5	Common

INSERTION LOSS vs. TEMPERATURE (SC 1x8)

WAVELENGTH DEPENDENT LOSS (SC 1x4)

OPTICAL RESPONSE TIME

$500 \mu \mathrm{~s} / \mathrm{div}$

CONTINUOUS SWITCH OPERATION

$10 \mathrm{~ms} / \mathrm{div}$

